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Abstract
Recent advancements in cognitive neuroscience and digital technology have significantly accelerated the adoption of digital
therapeutics for cognitive impairment. This viewpoint explores the innovative applications of digital therapeutics in the
assessment, intervention, management, and monitoring of cognitive disorders while highlighting key challenges that impede
their widespread integration into clinical practice. Drawing on the definition of cognitive digital therapeutics (CDTx) and
the multistakeholder collaboration required for its development and implementation, this paper examines the role of digital
technologies in cognitive health and explores challenges from multiple perspectives, including clinical practice, policy
framework, user adoption, ethics and privacy, and data interoperability and system integration. In addition, this viewpoint
offers strategic recommendations to address the challenges and future prospects of CDTx, emphasizing the importance of
multistakeholder collaboration, prioritizing user-centered design, and leveraging emerging technologies such as artificial
intelligence to enhance the scalability, sustainability, and future integration of CDTx.
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Introduction
Cognitive impairment is a transitional stage between normal
age-associated cognitive decline and dementia. Cognitive
impairment encompasses a broad spectrum of syndromes
characterized by persistent deterioration in cognitive function,
which ultimately leads to a decline in daily living and
working abilities, along with behavioral changes, placing a
substantial burden on patients, families, and society. Globally,
43.8 million people were living with Alzheimer disease and
related dementias in 2016, and this number may increase
to 152 million by 2025 [1], with the associated economic

burden estimated at US $2.8 trillion in 2019 and projected
to exceed US $4.7 trillion by 2030 [2]. As the condition
progresses, patients increasingly rely on informal caregivers,
who face not only physical and emotional stress but also
financial strain, including reduced work hours and income
loss [3,4]. These trends underscore an urgent need for
scalable, innovative, and cost-effective solutions to support
individuals with cognitive impairment and their caregivers.

Advancements in information technology have paved
the way for innovative medical technologies, supporting
clinical practice, enhancing disease prevention, and improv-
ing prognostic management, offering significant potential
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in health care [5]. Since the establishment of the Digi-
tal Therapeutics Alliance in 2017, digitally-based therapeu-
tic methods, digital therapeutics (DTx), have been widely
researched and applied. DTx deliver medical interventions
directly to patients using evidence-based, clinically evaluated
software to treat, manage, and prevent a broad spectrum of
diseases and disorders [6,7]. Currently, there is no universally
accepted definition of DTx at the international level, however,
DTx solutions commonly share key characteristics, including
the use of high-quality software, rigorous evidence-based
validation, and targeted therapeutic interventions [8,9]. DTx
have the potential to reduce health care costs, save diagnos-
tic and treatment expenses, improve disease diagnosis and
treatment efficiency, increase patient accessibility, optimize
disease treatment and management plans, enhance patient
adherence, and improve treatment outcomes [4].

Cognitive digital therapeutics (CDTx) refer to innovative
applications of DTx in the field of cognitive disorders. These
software-driven interventions provide patients with evidence-
based digital solutions for cognitive assessment, prevention,
treatment, and ongoing management. Powered by clinically
validated software programs, CDTx offer evidence-based
approaches for cognitive assessment, behavioral intervention,
and monitoring and management of cognitive disorders,
providing scalable and personalized solutions to support
cognitive care across diverse care settings. Despite their
promise, the adoption of CDTx remains uneven and fraught
with real-world challenges, particularly in reaching older
populations, navigating regulatory ambiguity, ensuring data
privacy, and achieving effective clinical integration. While
recent literature offers valuable insights into the clinical
efficacy and application scenarios of specific CDTx, ranging
from randomized controlled trials of cognitive training
for older adults [10], home-based digital interventions for
patients with Alzheimer disease (AD) [11], and meta-analyses
of computerized cognitive training [12], to reviews on digital
support for patients, caregivers, and health care professionals
[13], and regional digital cognitive screening programs for
early prevention in developing settings [14], research that
integrates technological innovation with the practical realities
of cognitive care remains limited. Most existing studies focus
on isolated interventions, lacking a structured perspective
that addresses both the challenges and prospects of imple-
menting DTx in this field. This absence of a comprehensive
perspective leaves a critical gap in understanding how to scale
innovation, address real-world barriers, and fully realize the
potential of CDTx in routine clinical practice.

This study aims to explore the current landscape of
CDTx by synthesizing published literature and our clini-
cal experiences on recent innovations and critically assess-
ing the challenges that limit their broader integration into
health care systems. Through this perspective, we aim to
provide timely, actionable insights for practitioners, research-
ers, and policy makers working to advance cognitive care.
Ultimately, we underscore the potential of DTx to promote
healthy aging and improve cognitive outcomes for aging
populations worldwide. This study is structured around the
following key dimensions: the innovative applications of

CDTx, the emerging challenges, and the future prospects in
their real-world adoption. Specifically, we explore how CDTx
are currently applied in cognitive assessment, intervention,
and long-term management across health care settings.
We then analyze major challenges, such as limited clini-
cal evidence, inadequate regulatory and policy frameworks,
user engagement issues, ethical and privacy concerns, and
technical interoperability, that constrain broader implemen-
tation. Finally, we highlight strategic prospects to support
scalable, sustainable, and equitable integration of CDTx into
routine care.

Innovative Applications of DTx for
Cognitive Impairment
Digital Cognitive Assessment

Overview
Traditional paper-and-pencil cognitive tests, such as the
Mini-Mental State Examination and the Montreal Cognitive
Assessment, are widely used in clinical practice. However,
these conventional methods exhibit numerous limitations,
including the necessity for professional personnel to conduct
face-to-face interviews, the potential for human bias in test
results, and practice effects resulting from repeated adminis-
trations [15,16]. To overcome these limitations and support
more scalable approaches to assessment and screening, digital
cognitive assessments have emerged, leveraging emerging
technologies to achieve automated, standardized, convenient,
multidimensional evaluations of cognitive functions. Over the
past 2 decades, digital cognitive assessment has experienced
rapid development, with extensive research and adoption in
clinical settings [15,16]. These digital assessments rely on
objective, quantifiable, physiological, and behavioral data
collected by digital devices, enabling continuous ecological
assessment and long-term monitoring of cognitive health.
Many CDTx solutions integrate assessment features, such
as digital assessment and screening tests, to track cogni-
tive status over time. Based on functionality, technological
characteristics, and application scenarios, digital cognitive
assessment can be broadly categorized into three primary
types: (1) computerized cognitive assessment, (2) digital
biomarker-driven cognitive assessment, and (3) multimodal
brain imaging cognitive assessment.

Computerized Cognitive Assessment
Computerized cognitive assessments include both scale-based
assessments and task-based assessments, developed based on
traditional pencil-and-paper tests, which have been viewed
as the gold standard for diagnosis. For example, digitalized
versions of the Montreal Cognitive Assessment, Mini-Men-
tal State Examination, and Alzheimer’s Disease Assessment
Scale-Cognitive Subscale have been validated and show
good consistency with traditional paper-and-pencil meth-
ods [17], offering advantages such as automated scoring
and real-time data analysis. Meanwhile, task-based assess-
ments like the Cambridge Neuropsychological Test Automa-
ted Battery [18], Brain-Check [19], Neurotrack cognitive
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Battery [20], and the Beijing Aging Brain Rejuvenation
Initiative brain health system evaluate cognitive abilities
such as memory, attention, and executive function through
interactive tasks and simulated environments [21]. Further-
more, virtual reality (VR) environments and computerized
cognitive games constitute significant components in this
category. These digital technologies either simulate tradi-
tional cognitive assessments or create novel interactive
tasks to evaluate a broad range of cognitive functions. For
example, the Virtual Supermarket uses immersive environ-
ments to simulate shopping tasks, providing an effective
method for assessing executive functions and memory
capabilities [22]. In addition, computerized cognitive games,
such as Episode Gamification, engage user engagement
through gamified design while simultaneously evaluating
various cognitive domains, including memory, attention, and
executive functions [23].
Digital Biomarker-Driven Cognitive
Assessment
Digital biomarkers are objective, quantifiable, physiological,
and behavioral data collected and measured through digital
devices, such as embedded environmental sensors, portable
devices, and wearable. These data can be gathered in the
context of daily activities with minimal intrusion, enabling
ecological monitoring. Digital biomarkers are increasingly
used for early detection and follow-up of cognitive impair-
ment. For instance, older adults with cognitive impairments
show significantly reduced daily activity ranges compared
with cognitively normal older adults, with more restric-
ted and stable activity patterns [24]. Therefore, monitoring
their daily behavior trajectories can provide early warnings.
Furthermore, by integrating machine learning and deep
learning algorithms and incorporating speech and natural
language processing from both healthy and patient popula-
tions, classifiers can be constructed to identify cognitive
impairments. It has been found that speech fluency, com-
plexity, and coherence can also serve as markers for early
screening [25]. In addition, significant oculomotor impair-
ments have been observed in cognitive impairment patients
[26], which monitors eye movements and visual attention
through tasks such as reading comprehension and visual
search, providing insights into abnormal attention and visual
behaviors [27].

Multimodal Brain Imaging Cognitive
Assessment
Multimodal imaging techniques offer diverse perspectives for
observing and analyzing the brain, providing critical imaging
evidence for the early diagnosis of AD by assessing struc-
tural, functional, and metabolic changes. Currently, widely
used multimodal imaging techniques for AD assessment
include structural magnetic resonance imaging (sMRI),
functional magnetic resonance imaging (fMRI), and positron
emission tomography (PET) [28]. Additionally, diffusion
tensor imaging (DTI) and other advanced methods provide
critical insights into the disease's pathology and progres-
sion [28], and no imaging modality can serve all purpo-
ses as each haves unique strengths and weaknesses [29].

In recent years, machine learning techniques have become
increasingly integrated with multimodal imaging data,
improving diagnostic efficiency and accuracy by classifica-
tion and prediction. A widely used machine learning and
deep learning approach in this context is ensemble learn-
ing, which integrates multiple machine learning models to
optimize fusion strategies. For instance, Shukla et al [30]
applied ensemble learning to positron emission tomogra-
phy and T1-weighted MRI data from the Alzheimer Dis-
ease Neuroimaging Initiative dataset for both binary and
multiclass classification of AD, cognitive impairment, and
cognitively normal individuals. Their approach achieved
up to 99% accuracy for binary classification and 96%
for multiclass classification, demonstrating its potential in
early AD diagnosis [30]. Convolutional neural networks
have also shown strong performance in AD classification.
Farooq et al [31] used deep convolutional neural networks
with a 4-way classifier to categorize AD progression
stages, achieving 98.8% accuracy on the Alzheimer Disease
Neuroimaging Initiative dataset. Furthermore, neuromorphic
computing, inspired by human brain mechanisms such as
neural connectivity and synaptic plasticity, enhances both
machine learning and deep learning models, excelling in
cognitive function analysis and medical imaging tasks. In AD
research, Turkson et al [32] demonstrated that spiking neural
networks outperform traditional machine learning methods in
predicting AD classification. In addition, a hybridization of
machine learning and deep learning is also used for classify-
ing AD, achieving an accuracy of 91.84% on test data [33].

Digital cognitive assessment methods offer distinct
functional strengths across modalities, and their thoughtful
integration may provide a more comprehensive understand-
ing and assessment of cognitive performance in real-world
environments and clinical settings.
Digital Cognitive Intervention

Overview
There is currently no definitive cure or intervention for
cognitive impairment, with existing management strategies
primarily aimed at symptom control and slowing disease
progression [22]. In parallel, pharmaceutical approaches face
significant challenges, with AD drug development showing
a failure rate as high as 99.6% [34]. Given the lack of an
intervention for cognitive impairment and dementia, research
has increasingly focused on delaying disease progression and
developing interventions to enhance and preserve cogni-
tive function [35]. CDTx have emerged as a promising
direction in this context, particularly for older adults with
cognitive impairment. These interventions can be broadly
categorized into 3 types. The first involves strengthening
existing cognitive pathways through behavioral exercises to
enhance specific cognitive functions; the second targets the
direct modulation of brain activity to improve overall brain
function or the targeted brain regions; and the third aims to
identify and manage risk factors associated with cognitive
decline, such as lifestyle behaviors, chronic diseases, and
mental health issues, with the goal of mitigating root causes
and delaying onset.
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Behavioral Training for Cognitive Enhancement
Many traditional cognitive interventions have been adapted
for use on current technological devices, such as smart-
phones, tablets, and computers, and corresponding digi-
tal interventions have been developed based on identified
evaluation metrics. These approaches are not only cost-effec-
tive alternatives but also innovative solutions for cognitive
enhancement [36]. For instance, CogniFit (CogniFit Ltd)
implements personalized and gamified cognitive tasks that
participants can perform at home. This intervention effec-
tively enhances cognitive function while promoting engage-
ment and adherence through psychoeducation and behavior
modification techniques. It has been shown to significantly
improve cognitive impairments in older adults [37]. Fur-
thermore, video games combining cognitive gameplay with
physical exercise, referred to as “Exergames,” have been
developed. These games have been shown to improve
physical function, reduce depression, and enhance cognition
and quality of life in older adults [38]. VR also represents
a promising intervention, with its immersive and inter-
active features making it well-suited for simulating com-
plex environments and tasks to improve cognitive training
outcomes. Although studies validating the effectiveness of
VR remain relatively limited, existing research suggests its
potential to improve memory function and social interaction
[39]. Further research is needed to optimize the design and
broaden the application of these technology-based interven-
tions [40].

Direct Modulation of Brain Activity for
Cognitive Improvement
This approach primarily uses neuro-modulation technologies
to target specific brain regions or neural circuits, enhancing
or restoring brain function. Repetitive transcranial magnetic
stimulation is a widely used technique that has been shown
to improve cognitive function in patients with cognitive
impairment [41], and various combinations of repetitive
transcranial magnetic stimulation parameters have been found
effective in enhancing different cognitive domains–based
approaches suggest that cognitive impairments are linked
to distributed brain networks rather than isolated regions
[42]. The corticohippocampal circuit, crucial for long-term
memory, can be targeted through paired associative stim-
ulation (PAS) to enhance memory connections. Studies
have shown that PAS improves delayed recall in cognitive
impairment by synchronizing neuronal activity within this
network [43]. In addition, PAS mimics sleep-related neural
oscillations, facilitating memory consolidation and optimizing
memory training outcomes [44].

Identification and Intervention of Risk Factors
for Cognitive Decline
The 2024 Lancet Commission reports that around 45% of
dementia cases may be prevented or delayed by addressing 14
modifiable risk factors, including lifestyle, health, environ-
mental, and social factors [45]. In line with this, another
approach to improving cognitive abilities involves address-
ing risk factors that impair cognitive development, such

as diabetes, depression, and hypertension [46]. For exam-
ple, Deprexis, a digital tool based on psychotherapy, helps
improve mood and increase positive emotions and behav-
iors [47]. The HERB Digital Hypertension 1 (HERB-DH1)
alleviates hypertension by offering education and lifestyle
guidance, including reducing salt intake, controlling weight,
exercising, improving sleep quality, and managing stress [48].
In addition, other digital intervention tools targeting diet,
smoking, and alcohol consumption can also be effectively
used to address these risk factors.

Digital cognitive interventions reflect an evolving
understanding that cognitive health is related not only to
neural mechanisms, but also to behavioral, psychological, and
environmental factors. As such, digital cognitive interventions
hold significant potential to complement existing care models
and broaden access to timely, personalized support.
Digital Cognitive Management and
Monitoring

Overview
Cognitive management and monitoring refer to the ongo-
ing tracking of cognitive functions over time, offering a
longitudinal view of an individual’s cognitive health. This
approach captures fluctuations in cognitive abilities, supports
early detection of decline, and enables timely intervention and
cognitive care planning.

Cognitive Assistance Technology
Cognitive assistance technologies leverage digital tools,
including information and communication devices and
decision-support systems, to help individuals with cognitive
impairment and their caregivers in daily cognitive care and
management. These technologies aim to enhance quality
of life, improve caregiving efficiency, and promote inde-
pendent living. Personal digital assistance programs, such
as smartphone apps, assist with daily life management by
helping patients manage time, remember appointments, and
organize tasks, which have been shown to significantly
improve executive function in patients with acquired brain
injuries [49]. In addition, many of these therapeutics integrate
health monitoring features, such as medication reminders
and physiological data tracking, providing valuable feedback
loops for clinicians and care teams. Wearable devices such
as smartwatches and fitness trackers further expand cogni-
tive assistance by continuously monitoring physical activity,
sleep patterns, and cognitive performance, enabling real-
time adjustments to interventions as needed [50]. Multime-
dia-based tools, including video, audio, and internet-based
assistive tools also provide rich resources for caregivers,
including online training, remote video calls for timely
support, and artificial intelligence (AI)–powered decision
support systems that generate personalized care plans based
on patients’ data [51].

Real-Time Cognitive Monitoring Technology
Real-time cognitive monitoring technologies collect objective
physiological and behavioral data to continuously assess
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patients’ cognitive status and functional capacity in daily
life. Devices such as actigraphy sensors, GPS, in-home
cameras, and electroencephalography (EEG) systems enable
and facilitate real-time tracking, analysis, and evaluation of
cognitive status and intervention effectiveness. Mobile apps
and mobile health solutions are increasingly used to pro-
vide task-based feedback and cognitive performance tracking
over time, helping patients and clinicians identify patterns in
cognitive function [52].

Advanced EEG methods, including quantitative EEG,
are now being embedded into digital monitoring devices
to detect abnormal brain activity and enable earlier identifi-
cation of cognitive decline. Furthermore, machine learning
algorithms and large language models applied to real-time
data can forecast future cognitive decline based on behavioral
and neural biomarkers, opening new possibilities for early
diagnosis and proactive intervention [53].

Digital cognitive management and monitoring technol-
ogies mark a shift toward proactive, personalized, and
data-driven cognitive care and management. By supporting
both individuals and caregivers through real-time feedback
and adaptive support systems, these tools offer meaningful
opportunities to enhance quality of life and optimize care
delivery across various stages of cognitive impairment.

Figure 1 presents a structured summary of the innovative
applications of CDTx for cognitive impairment, catego-
rizing their core functions into 3 domains—digital cogni-
tive assessment, digital cognitive intervention, and digital
cognitive management and monitoring. The figure highlights
how these technologies are applied across the care contin-
uum to support early detection, personalized treatment, and
ongoing disease management for cognitive impairment.

Figure 1. Cognitive digital therapeutics. AD: Alzheimer disease; AI: artificial intelligence; DTI: diffusion tensor imaging; EEG: electroencephalo-
gram; fMRI: functional magnetic resonance imaging; MCI: mild cognitive impairment; MRI: magnetic resonance imaging; PAS: paired associative
stimulation; PET: positron emission tomography; rTMS: repetitive transcranial magnetic simulation; sMRI: structural magnetic resonance imaging;
VR: virtual reality.

Challenges and Future Prospects of
CDTx: Multistakeholder Perspective
Clinical Evidence and Effectiveness

Challenges
CDTx must undergo rigorous clinical validation to ensure
their adoption in health care. Despite growing enthusiasm, the
lack of comprehensive clinical validation makes it difficult
for stakeholders to assess their true value compared with
conventional interventions. One major challenge lies in the
heterogeneity of cognitive impairment populations, which
complicates the development of standardized protocols and

outcomes metrics [54]. This variability hampers the ability to
draw consistent, generalizable conclusions from clinical trials
and real-world implementations consistently.

Another critical obstacle is the rapidly evolving nature of
DTx technologies, which often outpaces the development of
clinical guidelines and regulatory frameworks. This techno-
logical dynamism can lead to discrepancies in trial designs,
end point selection, and outcome measures, making compar-
isons across studies difficult and limiting the accumulation
of robust evidence [55]. In addition, cultural and geographic
variations in clinical practice and health care infrastructure
further complicate the establishment of unified evidence
frameworks that can be applied universally [56].
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Future Prospects
To address these challenges, innovative strategies empha-
size the potential of real-world evidence and home-based
interventions. For example, remotely supervised programs
that integrate both cognitive and physical training reduce
patient and caregiver burden while enabling broader
participation and scalable clinical data collection [57].
Likewise, leveraging data from electronic health records and
wearable devices allows for the generation of real-world
insights that complement traditional clinical trial findings,
providing a more comprehensive understanding of DTx
outcomes and performance [58].

Cross-sector collaboration is essential to accelerating
clinical validation efforts. Consensus building among
researchers, clinicians, and patient groups can help define
standard outcomes and protocols, as well as the acceptable
efficacy threshold [59]. International efforts and coordination
on clinical trial methodology and data-sharing practices will
be critical to facilitate evidence accumulation, consistency,
and comparability of findings.
Regulatory Uncertainty and Policy Gaps

Challenges
CDTx face significant regulatory challenges due to the
absence of dedicated pathways for their development,
validation, market entry, and postmarket oversight. Existing
medical device regulations lack the flexibility required to
accommodate rapidly evolving digital health technologies and
DTx, leading to uncertainties in approval, compliance, and
clinical adoption [60,61]. The lack of harmonized regulatory
standards results in inconsistent prescribing criteria across
jurisdictions, which complicates clinical integration and limits
the scalability of DTx solutions [62,63]. In addition, ongoing
debates over whether DTx should follow a prescription-based
model or be available directly to consumers further fragment
the regulatory landscape, influenced by divergent commercial
strategies and legal frameworks [64].

Furthermore, current regulatory structures struggle to
incorporate dynamic mechanisms that can keep pace with the
fast-moving technological innovations [65]. Varying evidence
requirements across countries or states often lead to redundant
approval processes, increasing costs and delaying the timely
entry of products into the market [66]. Furthermore, many
current regulatory assessments and policies do not adequately
account for the broader impact of DTx on patient educa-
tion, behavioral change, and system efficiency [67], reflect-
ing underlying policy gaps in recognizing the multifaceted
value of DTx. Insufficient or absent postmarket surveillance
mechanisms and inadequate policy oversight further limit the
ability to monitor the long-term safety, real-world effective-
ness, and scalability of CDTx [68].

Future Prospects
Several recent policy efforts suggest a shift toward greater
alignment and innovation in regulating digital health. At the
global level, leading regulatory bodies have also made strides

in establishing pathways for the evaluation and approval of
DTx. In the United States, the Food and Drug Administra-
tion adopted the Software as a Medical Device regulatory
framework [9], which aligns with international guidelines
developed by the International Medical Device Regulators
Forum, this framework provides risk-based classification and
guidance for DTx, with several products such as Endeav-
orRx, which is a digital therapeutic product designed by
Akili Interactive, already approved under these standards
[69]. In Europe, in its Regulatory Science Strategy to 2025,
the European Medicines Agency proposes the creation of an
integrated evaluation pathway for assessing medical devices,
in vitro diagnostics, and borderline products including digital
health technologies and therapeutics [70]. In China, guide-
lines from the National Health Commission, the National
Administration of Traditional Chinese Medicine, and the
Chinese Center for Disease Control and Prevention have
laid the foundation for promoting AI applications and digital
health technologies including DTx, providing a strategic
framework and instructions for the application of AI and
digital health in health care [71]. These guidelines emphasize
the safe and strategic integration of emerging technologies
into clinical pathways, providing a regulatory environment
that supports both innovation and standardization.

Despite these advances, cross-national variations in
evidence thresholds, regulatory timelines, and postmarket
surveillance systems persist. This lack of harmonization and
consistency often leads to duplicative regulatory burdens,
increased costs, and slower global dissemination of DTx. To
bridge the gap between technological innovation and outdated
regulatory structures, tailored regulatory frameworks are
needed to establish safety, efficacy, and usability standards
while enabling adaptive to adjust and change that could
accommodate ongoing technology advancements [72,73].
One promising model is the use of “regulatory sandboxes,”
which provide controlled environments for testing DTx
and digital health products under specific safety standards
and regulatory oversight [73]. This approach enables more
agile evaluation and iterative refinement, allowing regulatory
bodies to monitor emerging therapeutics and technologies
more closely, thereby accelerating time to market while
safeguarding patient safety.

In addition, enhanced collaboration among regulators,
policy makers, clinicians, and industry stakeholders will be
essential to streamline prescribing guidelines and establish
consistent approval criteria [65]. Global harmonization of
clinical evidence requirements across jurisdictions can help
reduce redundant approval processes, lower market entry
barriers, and accelerate the adoption of DTx [66]. Finally,
strengthening postmarket surveillance through real-time data
analytics, patient registries, and adverse event tracking
will enable regulators and policy makers to respond more
dynamically, ensuring that DTx remain safe, effective, and
sustainable over time [68].
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Patient Acceptance and Engagement

Challenges
The adoption and implementation of DTx depend signifi-
cantly on user acceptance and long-term engagement, both of
which are influenced by factors such as perceived usefulness,
ease of use, trust, and accessibility. One persistent challenge
is high dropout rates and nonadherence, often linked to
difficulties in maintaining interest and motivation over time.
For patients with cognitive impairments or limited digital
literacy, these platforms may present a steep learning curve or
misunderstanding, leading to user frustration, disengagement,
and eventual abandonment of DTx. Another key issue is
perceived usefulness, if users do not experience clear benefits
such as improved health outcomes and enhanced quality of
life compared with traditional treatment methods, they are
unlikely to maintain consistent engagement [74]. Similarly,
complex user interfaces, technical glitches, or insufficient
support can act as further barriers to adoption [75]. These
factors are especially important in older populations, where
cognitive limitations may intersect with low technology
familiarity.

Notably, a qualitative study involving older adults using
a cognitive training DTx platform found that although some
users experienced difficulties understanding the instructions,
many still perceived the platform as both enjoyable and
beneficial, particularly when it was recommended by health
care providers. Participants expressed strong awareness of
the importance of cognitive training and demonstrated greater
trust and willingness to engage with digital health technolo-
gies and therapeutics that were clinician-endorsed [76].

Future Prospects
To address these engagement challenges, user-centered
design must be placed at the core of DTx development.
Iterative co-design approaches emphasize the importance of
involving target users throughout the development cycle and
can ensure that DTx products align with their real-world
needs, preference, and capabilities [77]. Participatory design
frameworks, such as those applied in the iReadMore app
(Neurotherapeutics Group), have been shown to enhance
usability and promote user motivation and accessibility
through personalization and intuitive interfaces [78].

Tailoring DTx products to the cognitive and physical
capabilities of target populations is critical. For example,
interfaces designed with simplified navigation, voice support,
and visual aids may increase accessibility for users with mild
cognitive impairment. As Vial et al [79] discuss, human-cen-
tered and empathic design processes ensure that digital mental
health interventions are both accessible and aligned with user
needs, fostering trust and long-term usage. In parallel, trusted
intermediaries, such as physicians, therapists, or community
health workers, play a crucial role in increasing adoption by
legitimizing the use of DTx and encouraging long-term use
[79]. Wong et al [80] emphasize that user-centered design
not only improves usability but also ensures integration
with clinical workflows, enhancing the credibility of digital

tools when endorsed by medical professionals. Furthermore,
Strauss et al [81] argue that cross-functional frameworks,
including input from patients and health care providers,
result in solutions that are both effective and engaging.
By addressing these barriers and emphasizing user-centered,
humanized design, digital therapies can achieve greater
acceptance and adherence among diverse patient populations.
Data Privacy and Ethical Concerns

Challenges
The rapid development of DTx brings significant ethical and
privacy-related concerns that must be addressed to ensure
patient trust, data safety, and equitable access to care. One
of the foremost challenges is data privacy and security, as
DTx platforms often require the continuous collection and
processing of highly sensitive personal health data. This
introduces substantial risks of unauthorized access, data
breaches, and misuse, particularly when robust data protec-
tion measures are currently lacking. These risks are further
complicated by regional inconsistencies in data protection
legislation, such as varying implementations of General Data
Protection Regulation (GDPR)–like frameworks, leading to
uneven security levels across jurisdictions [82].

Another critical concern is informed consent. Many
patients, particularly those with cognitive impairments,
struggle to fully understand the implications of data-sharing
policies, especially when consent forms and data practices are
opaque or overly complex, undermining the principle of truly
informed consent [83].

In addition, digital health technologies frequently require
reliable internet access, compatible devices, and basic digital
literacy, creating barriers for underprivileged populations
and potentially exacerbating health inequities. The lack of
robust postmarket surveillance systems further compounds
these concerns, as ongoing real-world safety and effectiveness
data are often insufficient, making it difficult to oversee and
identify emerging ethical risks [65].

Future Prospects
A comprehensive, ethically grounded strategy is essential to
ensure the safe, ethical, and equitable deployment of CDTx.
First, strengthening data protection frameworks is crucial, this
includes mandating the use of encryption, anonymization, and
secure data storage protocols, as well as enforcing compliance
with international standards such as General Data Protection
Regulation [84]. Second, simplifying consent processes and
improving transparency can empower patients to make truly
informed decisions [85], this may involve visual aids, plain
language summaries, or interactive digital interfaces that
clarify how personal data will be used. To further promote
fairness, developers need to actively address algorithmic
biases through inclusive design, regular ethical audits, and
accountability mechanisms to ensure system decisions do not
reinforce existing disparities [86,87].

Furthermore, integrating comprehensive postmarket
surveillance on data privacy and safety as a core component
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of DTx regulation is vital, including real-time monitoring,
longitudinal patient registries, and adverse event tracking and
reporting systems to continuously monitor and enhance safety
and ethical integrity over time [88]. Finally, ethically sound
deployment of CDTx requires long-term collaboration among
different stakeholders. Regulatory bodies, clinicians, industry
developers, and patient advocacy groups must co-develop
ethical guidelines and frameworks that reflect diverse values
and lived experiences [89]. Such collaboration ensures that
DTx are implemented in a way that protects individual data
and rights while advancing clinical innovation.
Data Interoperability and System
Integration

Challenges
The effective integration of CDTx into existing health care
systems is significantly hindered by issues of data intero-
perability and system integration. Seamless data exchange
between CDTx platforms and electronic health records
(EHRs) is crucial for clinical utility, yet technical fragmen-
tation and inconsistent standards remain major obstacles
[90]. Many health information technology systems operate
in silos, and the lack of consistent technical standards across
platforms, along with fragmented digital health ecosystems,
poses significant barriers to building a unified infrastructure
[91].

Furthermore, current health care infrastructures often
lack the capacity to accommodate digital health and
DTx products, especially in resource-limited settings [91].
Although standards such as HL7 Fast Healthcare Interopera-
bility Resources (FHIR) are gaining momentum, implemen-
tation remains inconsistent and uneven across regions and
health care organizations, leading to gaps in compatibility
and functionality. These problems are compounded by the
increasing reliance on internet of things devices, such as
wearables and home monitoring tools, which often struggle
to interface effectively with cloud-based EHR systems, this
lack of compatibility limits the aggregation, accessibility, and
clinical utility of patient data in clinical settings [92].

Future Prospects
Addressing these challenges requires the creation of an open,
interoperable digital ecosystem. Adopting globally recog-
nized interoperability standards will enhance the usabil-
ity, integration, and scalability of CDTx [93,94]. Among
these, HL7 FHIR has emerged as a foundational frame-
work for standardized data exchange across diverse health
care systems. Its modular architecture and open application
programming interface design make it especially well-suited
for supporting DTx in dynamic and data-intensive environ-
ments [95].

Beyond interoperability, data security must remain a
parallel priority. Integrating blockchain technologies into
FHIR-based systems has shown potential for enhancing the
trustworthiness and traceability of shared health data while
reducing risks of unauthorized access and data breaches [93].

In clinical practice, the successful integration of CDTx
with EHR systems could unlock personalized decision
support, reduce diagnostic errors, and enable more adap-
tive, data-driven care pathways [96,97]. As interoperability
standards become more widely adopted and system integra-
tion capabilities continue to improve, DTx can evolve from
standalone tools to fully embedded components within the
cognitive care delivery system, significantly enhancing their
effectiveness and sustainability.

Challenges and future prospects of CDTx involve 5
key domains, that is, clinical evidence and effectiveness,
regulatory uncertainty, patient acceptance, data privacy
and ethics, and system interoperability. Figure 2 outlines
these challenges and potential development pathways from
a multistakeholder perspective. Table 1 complements this
by summarizing key issues and proposed strategies across
stakeholder groups, offering a practical foundation to support
the clinical adoption and broader implementation of CDTx in
cognitive care.
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Figure 2. Summary of challenges and future prospects for cognitive digital therapeutics.

Table 1. Challenges, key issues, and future prospects for cognitive digital therapeutics.
Challenges Key issues Future prospects
Clinical evidence and effectiveness • Limited clinical validation

• Heterogeneous patient populations
• Lack of standard outcome metrics
• DTxa evolves faster than trials
• Cross-cultural inconsistencies

• Real-world data from EHRsb and wearables
• Home-based cognitive training
• Global consensus on protocols
• Harmonized clinical trial methods

Regulatory uncertainty and policy gaps • No dedicated DTx regulatory pathway
• Inconsistent prescribing policies
• Delayed approvals
• Insufficient postmarket surveillance

• Adaptive frameworks and sandboxes
• Unified criteria across regions
• Policy guidance (eg, AI+c in China)
• Dynamic postmarket systems and policies

Patient acceptance and engagement • Low digital literacy
• Poor perceived value
• High dropout rates
• Interface usability issues
• Lack of provider support

• User-centered and co-design development
• Simple, tailored interfaces
• Clinician endorsement
• Inclusive engagement strategies

Data privacy and ethical concerns • Data privacy vulnerabilities
• Complex consent processes
• Inconsistent global protection laws
• Exclusion of underserved groups

• Stronger data protection (eg, GDPR)d
• Transparent, simplified consent
• Algorithmic fairness
• Multistakeholder ethical governance

Data interoperability and system integration • Fragmented health ITe systems
• Lack of standard APIsf

• Limited infrastructure
• IoTg-EHR compatibility issues

• HL7 FHIRh-based integration
• Blockchain-secured exchange
• Personalized decision support
• Interoperable digital ecosystems

aDTx: digital therapeutics.
bEHR: electronic health record.
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cAI+: artificial intelligence plus (applications).
dGDPR: General Data Protection Regulation.
eIT: information technology.
fAPI: application programming interface.
gIoT: internet of things.
hFHIR: Fast Healthcare Interoperability Resources.

Conclusion
Cognitive impairment presents a significant global health
challenge, affecting millions of individuals and placing a
substantial burden on patients, caregivers, and health care
systems. CDTx have emerged as a promising innovation
in the assessment, intervention, and management of cogni-
tive disorders. However, several critical challenges remain,
including the need for rigorous clinical validation, the
establishment of comprehensive regulatory frameworks, and
the enhancement of patient acceptance and engagement to
support widespread adoption. Furthermore, data security and
ethical issues, data interoperability, and system integration
must be addressed to ensure the seamless integration of CDTx
into clinical practice.

Despite these challenges, the potential of CDTx to
transform the care and management of cognitive impairment
is undeniable. Innovations in digital cognitive assessment,
intervention, and management and monitoring technologies
offer unprecedented opportunities for early detection and
more efficient, patient-centered care in health care delivery.
The rapid advancement of AI technologies, such as ChatGPT
(OpenAI) and DeepSeek-R1 (DeepSeek), is expanding the
role of DTx in cognitive health, enabling more personalized
and scalable solutions.

Moving forward, a multistakeholder approach involving
researchers, health care professionals, technology developers,
policy makers, and regulators is essential. Future research
should focus on developing standardized clinical validation
methods, harmonizing regulatory frameworks globally, and
enhancing patient and health care professional acceptability
and engagement. Policy makers must prioritize the creation
of supportive regulatory environments that balance innova-
tion with patient safety while ensuring equitable access to
these technologies. Clinically, integrating AI-driven tools
into existing health care systems will require both techno-
logical advancements and operational adjustments to ensure
effectiveness and scalability.

Ultimately, the integration of DTx into clinical practice for
cognitive impairment holds significant potential to improve
patient outcomes and to transform how cognitive health care
is delivered, while also alleviating the burden on caregivers
and health care systems worldwide. As AI continues to drive
innovation, the development and scalable implementation
of CDTx are poised to play a pivotal role in shaping the
future of cognitive care. Coordinated, long-term, multistake-
holder efforts will be essential to ensure their broad adoption
and meaningful integration into routine clinical practice for
cognitive impairment.
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