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Abstract

Background: Large language models (LLMs), such as OpenAI’s GPT-3.5, GPT-4, and GPT-4o, have garnered early and
significant enthusiasm for their potential applications within mental health, ranging from documentation support to chat-bot
therapy. Understanding the accuracy and reliability of the psychiatric “knowledge” stored within the parameters of these models
and developing measures of confidence in their responses (ie, the likelihood that an LLM response is accurate) are crucial for the
safe and effective integration of these tools into mental health settings.

Objective: This study aimed to assess the accuracy, reliability, and predictors of accuracy of GPT-3.5 (175 billion parameters),
GPT-4 (approximately 1.8 trillion parameters), and GPT-4o (an optimized version of GPT-4 with unknown parameters) with
standardized psychiatry multiple-choice questions (MCQs).

Methods: A cross-sectional study was conducted where 3 commonly available, commercial LLMs (GPT-3.5, GPT-4, and
GPT-4o) were tested for their ability to provide answers to single-answer MCQs (N=150) extracted from the Psychiatry Test
Preparation and Review Manual. Each model generated answers to every MCQ 10 times. We evaluated the accuracy and reliability
of the answers and sought predictors of answer accuracy. Our primary outcome was the proportion of questions answered correctly
by each LLM (accuracy). Secondary measures were (1) response consistency to MCQs across 10 trials (reliability), (2) the
correlation between MCQ answer accuracy and response consistency, and (3) the correlation between MCQ answer accuracy
and model self-reported confidence.

Results: On the first attempt, GPT-3.5 answered 58.0% (87/150) of MCQs correctly, while GPT-4 and GPT-4o answered 84.0%
(126/150) and 87.3% (131/150) correctly, respectively. GPT-4 and GPT-4o showed no difference in performance (P=.51), but
they significantly outperformed GPT-3.5 (P<.001). GPT-3.5 exhibited less response consistency on average compared to the
other models (P<.001). MCQ response consistency was positively correlated with MCQ accuracy across all models (r=0.340,
0.682, and 0.590 for GPT-3.5, GPT-4, and GPT-4o, respectively; all P<.001), whereas model self-reported confidence showed
no correlation with accuracy in the models, except for GPT-3.5, where self-reported confidence was weakly inversely correlated
with accuracy (P<.001).

Conclusions: To our knowledge, this is the first comprehensive evaluation of the general psychiatric knowledge encoded in
commercially available LLMs and the first study to assess their reliability and identify predictors of response accuracy within
medical domains. The findings suggest that GPT-4 and GPT-4o encode accurate and reliable general psychiatric knowledge and
that methods, such as repeated prompting, may provide a measure of LLM response confidence. This work supports the potential
of LLMs in mental health settings and motivates further research to assess their performance in more open-ended clinical contexts.
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Introduction

Over the past decade, there has been a significant surge of
interest in the application of artificial intelligence (AI),
particularly large language models (LLMs), within medical
contexts. While AI-related efforts in medicine have historically
focused largely on applying deep learning methods to analyze
data, most notably image data [1,2], more recent advancements
at the intersection of natural language processing, deep learning,
and generative AI have produced LLMs capable of generating
and interpreting complex clinical text [3-5]. These developments
have prompted inquiry among developers and researchers about
the ability of LLMs to assist in a range of pressing medical
tasks, including increasing the efficiency of clinical
documentation, supporting clinical decision-making, and
developing educational patient simulations [6]. In psychiatry
and mental health, the text generation and interpretation
capabilities of LLMs have generated enthusiasm for their
potential applications in screening and diagnosing psychiatric
illnesses, generating risk assessments, and serving as therapeutic
chatbots [7-9]. Amid the severe shortage of psychiatric providers
[10,11], these envisioned LLM tools could increase provider
efficiency and offer new modalities for treatment, addressing
critical gaps in mental health care equity and access.

However, despite their potential benefits, employment of LLMs
in the broader domain of mental health carries significant
potential risks, such as producing inaccurate, unreliable, or
biased responses, raising concerns about their safety and
efficacy, especially in a field already besieged by stigma. Under
the hood, LLMs, such as ChatGPT models from OpenAI, Large
Language Model Meta AI (LLaMA) from Meta, and Claude
from Anthropic, are deep neural networks (typically transformer
architectures) with billions to trillions of parameters that have
been trained on a massive corpus of unstructured text, including
webpages, books, and video transcripts [3,4,12-14]. The
“knowledge” these models produce can be divided into two
distinct forms: (1) parametric knowledge, which consists of the
information encoded in the model’s weights during pretraining
and (2) explicit knowledge, which is presented to the model
after the training process (eg, through the user’s prompt or a
retrieval-augmented system). While explicit knowledge can be
updated or changed rapidly, parametric knowledge is encoded
in the model and changes only when the entire model is
retrained. As is true of all predictive models, LLMs may encode
bias reflected in their training data and are limited to the
knowledge contained in training examples, which can manifest
in inaccurate or unreliable performance and can contribute to
their potential for harm. For example, a recent study found that
GPT-4’s clinical scenario responses are influenced by societal
biases, causing it to recommend erroneous diagnoses and
management plans based on factors such as race and gender
[15]. Other studies have consistently shown that LLMs may
misinterpret specialized terminology (eg, “egosyntonic”) within
domain-specific text [16,17].

Given these demonstrated potential risks, the successful
deployment of LLMs for mental health tasks will require close
attention to (1) the quality of mental health information in their
underlying training data, (2) the resulting accuracy of the
psychiatric parametric knowledge, that is, the “knowledge”
stored within the models’ parameters after training, and (3) the
reliability with which the models produce accurate psychiatric
answers. In addition, to promote the responsible use of
LLM-based systems, it will be essential to develop methods to
quantify the level of confidence that can be placed in LLMs’
responses.

To evaluate the medical parametric knowledge encoded in
LLMs, researchers in various subfields of medicine have
assessed the accuracy of LLM answers to standardized
multiple-choice questions (MCQs) from examinations
commonly used for medical licensing or education [18-20].
Generally, investigations of LLM performance on a range of
examinations, such as the United States Medical Licensing
Exam, have reported accuracy rates surpassing those of qualified
human test takers [18-20]. However, findings of investigations
across different subfields of medicine are variable [18],
highlighting a need to characterize performance in different
domains and clinical contexts. Notably, no work to date has
characterized LLM performance in psychiatry knowledge
assessments [18]. Characterizing LLM performance in
psychiatric contexts is especially important, as these models
may be particularly vulnerable to inaccuracies or biases in
mental health clinical contexts. Specifically, there is a significant
volume of mental health–related misinformation on the internet
[21,22], and there are well-documented challenges with the
reliability and validity of psychiatric diagnoses [23,24]. Thus,
LLMs may encode inaccurate information drawn from unreliable
online sources or reflect underlying clinical uncertainties,
making it critical to rigorously evaluate their performance.

In addition to accuracy, there is a need to investigate LLM’s
reliability in answering psychiatric questions and develop
measures of “confidence” in their responses. An essential
property of any autonomously operating LLM tool, such as a
patient-facing mental health chatbot, is the ability to reliably
provide accurate and appropriate responses. Furthermore,
incorporating a measure of response confidence may be crucial
for ensuring safety guarantees or helping providers and patients
contextualize and interpret LLM outputs.

To date, most research exploring LLM performance on
standardized MCQs has focused on the popular and
commercially available GPT family of models, colloquially
known as “ChatGPT” [18-20]. While this family of LLMs is
rapidly expanding, common models include GPT 3.5, 4, and
4o. GPT-3.5, released in November 2022, contains
approximately 175 billion parameters and shows a significant
improvement over its predecessor (GPT-3) by using
reinforcement learning from human feedback training to enhance
its ability to follow instructions and maintain coherent
conversations [25,26]. GPT-4 was subsequently released in
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March 2023. It introduced multimodal capabilities, enabling it
to process both text and images, and displayed better
performance in complex tasks and standardized tests (eg,
Scholastic Assessment Test, Graduate Record Examination,
and bar exams) [27]. Although its exact parameter count has
not been publicly disclosed, it is widely speculated to have
approximately 1.8 trillion parameters [4,26]. GPT-4o (or GPT-4
“omni”), introduced shortly thereafter in November 2023, further
expanded multimodal capabilities to speech and claimed to
achieve the same performance as GPT-4 but at 50% reduced
cost and greater speed [28]. While its underlying architecture
has not been publicly disclosed, there is speculation that it may
contain fewer parameters than GPT-4 or may have been trained
on a smaller, more curated dataset [26].

To our knowledge, no comprehensive evaluation of the
psychiatric parametric knowledge encoded in commercially
available LLMs has been published to date. Similarly, there is
a gap in the literature regarding the assessment of LLM
reliability and the identification of predictors of LLM response
accuracy within medical domains. To address these gaps, this
study focuses on evaluating the accuracy and reliability of LLMs
in psychiatry and attempts to identify the predictors of answer
accuracy through the following three aims:

1. To evaluate the psychiatric knowledge encoded in 3
commonly available LLMs (GPT-3.5, GPT-4, and GPT-4o)
by assessing their performance on standardized psychiatry
MCQs. Although performance depends on many factors,
past work has suggested that models with more parameters
achieve superior performance [29]. Therefore, we
hypothesized that models with significantly more
parameters would perform better (ie, GPT-4 would
outperform GPT-3.5). In addition, OpenAI claims that
GPT-4o maintains the performance of GPT-4 on routine
tasks but may be less optimal for specific edge cases
[27,28]. Because answering psychiatry MCQs seems more
niche compared to other tasks required by GPT models, we
further hypothesized that GPT-4o, due to its optimization,
may perform slightly worse than GPT-4 but still better than
GPT-3.5.

2. To analyze the reliability of these LLMs in psychiatric
assessments by examining response variance for the same
MCQ over 10 trials. We hypothesized that models with
greater accuracy would exhibit more consistency in their
responses (ie, higher variance). Based on our hypotheses
on accuracy above, we hypothesized that the order of
consistency is as follows: GPT-4 > GPT-4o > GPT-3.5.

3. To explore two predictors of LLM accuracy in response to
MCQs: (1) the model’s self-reported confidence for the
MCQ and (2) the model’s response consistency for the
MCQ. We hypothesized that there would be no significant

correlation between the model’s self-reported confidence
and the accuracy of the response. We anticipated that the
model would be more likely to generate accurate responses
to a MCQ when it demonstrated greater response
consistency across multiple attempts for that same question.

This work represents essential foundational research for the
integration of AI into mental health care, evaluating how models
like GPT-3.5, GPT-4, and GPT-4o encode and apply psychiatric
knowledge. Through a systematic exploration of LLM
performance for standardized psychiatry MCQs, we highlight
the current capabilities of these models and outline
considerations for their safe and effective use in clinical settings.

Methods

Models
A total of 3 LLMs (GPT-3.5, GPT-4, and GPT-4o) were selected
for this evaluation. GPT-3.5 is an LLM with 175 billion
parameters [26]. GPT-4 is estimated to have 1.8 trillion
parameters (unconfirmed), while GPT-4o is a faster, more
efficient version of GPT-4 with an unknown parameter count
[26]. These models were selected due to their widespread
commercial availability, extensive user base, and common use
in clinical informatics settings [19]. In addition, our institution
maintains a Health Insurance Portability and Accountability
Act–compliant AI ecosystem that allows these models to be
accessed under a license that ensures adherence to regulatory
standards [30]. Importantly, under this license, data used in this
study were not stored by OpenAI and may not be used to train
future LLMs [30].

For analysis, “model temperature” and “top_p” parameters were
set to 0.6 and 0.7, respectively, in line with OpenAI guidance
for “exploratory code writing” [31], which we believed, a priori,
would offer sufficient determinism and flexibility for the MCQ
task at hand.

Dataset
A total of 150 single-answer MCQs were extracted from a
practice test in the Psychiatry Test Preparation and Review
Manual E-Book, a comprehensive textbook for psychiatry
physicians preparing for the American Board of Psychiatry and
Neurology’s certification [32]. Each MCQ included a question
stem, 5 answer options (A through E), a correct answer, and a
question domain (eg, psychopharmacology and neuroscience).
To ensure consistency and reduce confounding, all MCQs were
standardized using a uniform format. Questions were encoded
to be uniform in structure (ie, stem followed by answer options),
using a multiple-choice single-answer format without forced
justification [33], and prefaced with a standard prompt
explaining the MCQ task (Figure 1).
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Figure 1. Answer prompting. Zero-shot prompting schema for requesting large language model answers to multiple-choice questions.

Of note, the MCQs are designed to cover general psychiatric
knowledge but do not comprehensively evaluate subfields of
psychiatry such as child and adolescent psychiatry or geriatric
psychiatry. In addition, the Psychiatry Test Preparation and
Review Manual E-Book was published online and publicly
available on March 31, 2020, making it possible that its contents
were included in the training data for all GPT models. Since
OpenAI has not disclosed the training sources, this cannot be
confirmed.

Prompting Procedure

Answering MCQs
We evaluated the performance of 3 OpenAI LLMs: GPT-3.5,
GPT-4, and GPT-4o. Each model was programmatically
instructed to answer every MCQ 10 times to allow for
assessment of both accuracy and response consistency. Using
a zero-shot prompting approach [34], the initial prompt for each
MCQ presented the question stem and answer options and
instructed the model to answer the question based on the best
available scientific evidence. We opted to not use more
advanced prompting optimization techniques, such as role
prompting, few-shot learning, and chain-of-thought reasoning,
because we believed these to be less face valid for capturing
the behavior of a typical user (ie, patient or provider) in

interacting with LLMs. Future work may explore how to
optimize prompts to yield the best possible outputs.

For subsequent prompts, the model was also provided with a
list of its previous answers. Importantly, this design introduced
intentional variability across queries to facilitate inconsistency
within a limited number of trials. Employing a larger number
of trials was neither feasible for this study nor cost-effective or
practical for future applications that rely on response consistency
as an estimate of confidence in model-generated answers.

Building on methods described in the study by Wang et al [35],
all models were given a maximum of 15 attempts to provide 10
valid responses to every MCQ (defined as answering with a
letter option A through E). Responses were assessed
programmatically for their validity, and following the model
responding with an invalid response (eg, “H”), the prompt was
amended to offer additional encouragement to adhere to valid
responses (ie, to answer with a letter “A” through “E”).

Answer prompting is presented in Figure 1. Multimedia
Appendix 1 provides example prompts and GPT responses.

Generating LLM Self-Reported Confidence
When prompted directly, many LLMs will assign numerical
confidence values to their responses. To evaluate this
phenomenon in psychiatry MCQs, we adapted prompting
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schemes established by Xiong et al [36] to ask the models to
report self-confidence. Models were presented with the MCQ
stem and answer options and instructed to rate the likelihood
from 1 to 100 that it would be able to produce a response that
was both accurate and relevant. Preanswer evaluation (as
opposed to asking the model to rate its confidence in its answer
or other approaches) was chosen to evaluate the models’a priori

self-reported confidence. All models were given a maximum
of three attempts to provide 1 valid response defined as a
response that contained a number ranging from 1 to 100.
Following an invalid response, the prompt was amended to
encourage valid output.

Self-confidence prompting is presented in Figure 2. Multimedia
Appendix 1 provides example prompts and GPT responses.

Figure 2. Self-confidence prompting. Zero-shot prompting schema for requesting large language model self-confidence for answers to multiple-choice
questions.

Statistical Analysis

Model Accuracy
To simulate real-world scenarios (ie, in which providers and
patients would most likely only ask an LLM a question once,
for instance, “What medication for depression is associated with
the least QT prolongation?”), accuracy was defined as the
proportion of MCQs a model answered correctly on its very
first (ie, first of 10) attempt. Chi-square tests were used to
compare accuracy between models with α=.01 after Bonferroni
correction for multiple hypothesis testing.

Response Consistency (Reliability)
To evaluate response consistency across trials, we first
calculated the distribution of answers for each MCQ and model.
Specifically, for every MCQ and model, we recorded what
proportion of the time each answer (A through E) was chosen
over the 10 question-answering trials, resulting in a frequency
distribution of responses. We then calculated response
consistency using the variance of these frequency distributions:

For example, if the model answered “A” consistently across
multiple trials, this would yield a frequency distribution of {A:
1, B: 0, C: 0, D: 0, E: 0} and a variance of 0.2. In contrast, if
the model answered “A, A, B, B, C, C, D, D, E, E,” this would
yield a frequency distribution of {A: 0.2, B: 0.2, C: 0.2, D: 0.2,
E: 0.2} and a variance of 0. Thus, response consistency ranges
from 0 to 0.2 and can be interpreted as follows: a higher
response consistency indicates that the model selected more
consistent answers to the MCQ (ie, 1 option was chosen with
high frequency and the others with low frequency), and a lower
response consistency indicates that the model frequently changed
its answer to the MCQ. We used t tests to compare average
response consistency across MCQs between models with α=.01
after Bonferroni correction.

Predictors of Model Correctness
We investigated two potential predictors of model accuracy:
(1) response consistency and (2) the model’s self-reported
confidence. To examine whether questions with higher response
consistency were more likely to be answered correctly by the
model, point-biserial correlation coefficients were calculated
between the model’s response consistency to each MCQ and
the model’s accuracy in answering that MCQ. Similarly, we
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calculated point-biserial correlation coefficients between the
model’s self-reported confidence for each MCQ and its
correctness. Statistical significance was determined using an α
level of .01, which was adjusted with Bonferroni correction for
multiple hypothesis testing.

Results

Model Accuracy
On the first attempt, GPT-3.5 answered 58.0% (87/150) of
MCQs correctly, whereas GPT-4 and GPT-4o answered 84.0%
(126/150) and 87.3% (131/150) correctly, respectively (Table
1). Chi-square tests confirmed that both GPT-4 and GPT-4o
outperformed GPT-3.5 significantly (P<.001). There was no
substantial difference between the performances of GPT-4 and

GPT-4o (N=150; χ2
1=0.434; P=.51).

Table 1. Model accuracy.

Chi-square test resultsCorrect answersa (N=150), n (%)Model

GPT 4oGPT 4GPT 3.5

P valuebChi-square (df)P valuebChi-square (df)P valuebChi-square (df)

——————c87 (58.0)GPT-3.5

————<.00123.4 (1)126 (84.0)GPT-4

——.510.434 (1)<.00131.0 (1)131 (87.3)GPT-4o

aModel accuracy is assessed by the percentage of multiple-choice questions answered correctly. Note that accuracy was based solely on the model’s
first attempt at the multiple-choice question.
bChi-square P values compare accuracy between models with α=.01 after Bonferroni correction.
cNot applicable.

Response Consistency (Reliability)
Across 10 trials for every MCQ, there were significant
differences in the response consistencies of the 3 models.
Compared to GPT-4 and GPT-4o, GPT-3.5 exhibited
significantly less response consistency (Table 2). In addition to
being more consistent on average, GPT-4 and GPT-4o appeared
to more often offer the same answer across all trials (Multimedia
Appendix 2). Among questions that GPT-3.5 answered correctly,

it chose the same answer across 10 trials only 10% of the time.
Among questions that GPT-3.5 answered incorrectly, it never
chose the same answer across all 10 trials. In contrast, GPT-4
and GPT-4o offered the same answer across trials to 90% and
82% of questions answered correctly, and 25% and 26% of
questions answered incorrectly, respectively (Multimedia
Appendix 2). There were no significant differences between the
response consistencies of GPT-4 and GPT-4o (P=.36) (Table
2).

Table 2. Model consistency.

t test resultsaConsistency, mean
(SD)

Model

GPT 4oGPT 4GPT 3.5

P valuet test (df)P valuet test (df)P valuet test (df)

——————b0.082 (0.0549)GPT-3.5

————<.00118.0 (298)0.182 (0.0394)GPT-4

——.3600.917 (298)<.00119.6 (298)0.186 (0.0324)GPT-4o

at tests were used to compare average response consistency between models with α=.01 after Bonferroni correction.
bNot applicable.

Predictors of Model Correctness
As suggested by the reliability results above, response
consistencies for all models displayed significant, positive
correlations with response correctness (Table 3; P<.001).

Point-biserial correlation coefficients indicated that GPT-3.5’s
response consistency was moderately correlated with correctness
(r=0.304; P<.001). The response consistencies of GPT-4 and
GPT-4o were strongly correlated with correctness (r=0.682;
P<.001 and r=0.590; P<.001, respectively).
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Table 3. Response consistency as a predictor of correctness.

P valuebCorrelation coefficientaConsistency, mean (SD)Model

Incorrect responsesCorrect responses

<.0010.3040.062 (0.0624)0.096 (0.0584)GPT 3.5

<.0010.6820.120 (0.120)0.194 (0.0211)GPT 4

<.0010.5900.136 (0.136)0.193 (0.0226)GPT 4o

aPoint-biserial correlation between response consistency and response correctness for the models.
bSignificance set at α=.01 after Bonferroni correction.

In contrast to these findings, there were no associations between
the self-reported confidence and response correctness of GPT-4
and GPT-4o (P=.98 and P=.32, respectively) and only a weak
positive correlation between the self-reported confidence and
response correctness of GPT-3.5 (r=0.211; P=.009; Table 4).
GPT-4 appeared to generate lower self-evaluation measures and
a wider range of scores compared to GPT-3.5 and GPT-4o.

GPT-4 assigned self-confidence scores of <20 to the majority
of questions it answered both correctly (82/126, 65.1%) and
incorrectly (15/24, 63%). GPT-3.5 assigned self-confidence
scores of >70 to 98% (62/63) of incorrectly answered questions
and 98% (85/87) of correctly answered questions. GPT-4o rated
all incorrect and correct questions with self-confidence scores
of >70.

Table 4. Model self-reported confidence as a predictor of correctness.

P valuebCorrelation coefficientaSelf-confidence, mean (SD)Model

Incorrect responsesCorrect responses

.0090.21170.9 (7.69)72.8 (4.68)GPT 3.5

.98–0.0035624.1 (39.0)30.8 (42.3)GPT 4

.32–0.08281.8 (6.92)82.0 (6.76)GPT 4o

aPoint-biserial correlation between self-reported confidence and response correctness for the models.
bSignificance set at α=.01 after Bonferroni correction.

Discussion

Principal Findings
GPT-4 and GPT-4o displayed superior accuracy and greater
response consistency compared to GPT-3.5 on standardized
psychiatry MCQs. MCQ response consistency displayed a
moderate to strong positive correlation with MCQ accuracy
across all models. With the exception of GPT-3.5, model
self-reported confidence showed no correlation with accuracy.

Advancing the application of generative AI within mental health
settings requires that these tools be both accurate and reliable.
As a step toward this clinically relevant goal, this study is the
first to systematically evaluate the relative performance of 3
common LLMs in demonstrating psychiatric parametric
knowledge across a range of indices.

For our first aim, which was to evaluate the relative accuracy
of each of the tested LLMs, we determined that the most recently
developed models (GPT-4 and 4o) were robust in correctly
answering questions reflecting psychiatric knowledge and
significantly outperformed their predecessor (GPT-3.5). As a
reference point for interpretation, the GPT-4 and 4o models
performed at or above the average fourth-year psychiatry
resident from our institution on the annual Psychiatry Resident
In-Training Examination, whereas GPT-3.5 scored more than
10 percentage points below that benchmark. This finding
confirms prior work that has demonstrated the superior

performance of GPT-4 models on standardized testing across
multiple medical and nonmedical domains [27]. The raw
performance of GPT-4 has been somewhat mixed across studies
[19]. The psychiatry MCQ accuracy displayed by GPT-4 and
GPT-4o (84% and 87%, respectively) is comparable to
previously reported GPT-4 accuracy rates in other specialties,
such as ophthalmology (82%) and neurosurgery (83%) [37,38].
These findings show promise for the application of LLMs in
clinical mental health contexts. Further research is needed to
evaluate their performance in more clinically relevant psychiatric
scenarios (eg, less structured questions and multiple diagnoses)
and investigate potential biases in how LLMs generate and
apply knowledge.

While the technical reasons for the performance gains of GPT-4
over GPT-3.5 remain opaque, we may speculate that it is related
to GPT-4 being a potentially larger model trained on larger and
more representative datasets. Few studies have examined the
performance of GPT-4o in medical domains, and the technical
reasons it performs on par with GPT-4 are similarly opaque.
We can speculate that OpenAI achieved cost and speed gains
in GPT-4o (eg, smaller model and training on a more curated
dataset) and preserved the psychiatric parametric knowledge
encoded within the model.

For our second aim, which was centered on evaluating the
reliability of the tested LLMs in psychiatric domains, we found
that later models (GPT-4 and GPT-4o) provided more consistent
answers to the same MCQs compared to GPT-3.5. Although
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subject to the same caveats outlined above, these findings
suggest that GPT-4 and GPT-4o may be better suited for
supervised or autonomous applications in mental health. Their
consistency could offer stronger assurances regarding system
safety, thereby supporting their potential use in clinical decision
support, patient and provider education, and therapeutic chatbot
applications.

The greater accuracy and reliability of later models (GPT-4 and
GPT-4o) compared to their predecessor (GPT-3.5) contribute
to existing literature suggesting LLMs that perform better on
general language tasks tend to display similarly superior
performance in domain-specific tasks, such as psychiatry. This
property is promising as we would expect a future
state-of-the-art model (eg, o1 or a future “GPT-5”) to outperform
top models available today in terms of mental health-related
text interpretation and generation. The finding of no discernable
differences in performance between GPT-4 and its more cost-
and speed-efficient successor, GPT-4o, in this study suggests
that novel optimization techniques for maintaining the general
functionality of LLMs while improving their speed and reducing
their computational demand and cost may also extend to mental
health applications. In other words, methods that make these
models more efficient may do so while preserving psychiatric
knowledge. If this finding translates to similarly optimized
models in the future, it will enable more cost-effective and
effective LLM-based mental health services.

Finally, our third aim investigated features that could predict
the accuracy of LLM responses to psychiatric questions. Such
predictors could help quantify the “confidence” that users should
have regarding the accuracy of an LLM’s responses. This would
enable technology companies, health care providers, and patients
to better determine when close, critical verification of model
outputs is particularly important. As a result, they could reduce
the risk of a halo effect or “illusions of explanatory depth” [39],
which may occur when an LLM initially provides accurate
responses, leading to undue trust in subsequent outputs.

Our results suggest that response consistency is a promising
predictor of accuracy. When an LLM consistently selected the
same MCQ answer across trials, it was significantly more likely
to answer the question correctly on its first attempt. On the other
hand, when an LLM frequently changed its answers between
trials, it was more likely to answer incorrectly on its first
attempt. These findings suggest that response consistency can
be a valuable metric for estimating confidence scores in LLM
responses. To capitalize on this potential, developers of future
LLM tools should explore generating multiple responses for
each query to enable the measurement of response consistency
and inform confidence scoring. Integrating such confidence
scores into both supervised and autonomous applications of
LLMs will be essential for ensuring feasible, accurate, and safe
integration into clinical decision-making not only in psychiatry
but also across broader medical fields. In contrast, we found
that LLM self-reported confidence did not reliably correlate
with accuracy. This is in line with prior research showing that
LLMs vary in their ability to accurately predict their own
performance. While emerging methods may address these
limitations (eg, generating more accurate self-appraisal through
reinforcement learning) [40], it is important to emphasize to

both the general public and clinicians that the self-confidence
responses of LLMs should not be taken as indicators of their
actual competence.

Our findings generally indicate that accurate and reliable
psychiatric parametric knowledge is encoded in more recent
generations of LLMs (GPT-4 and GPT-4o) and support previous
work suggesting that the medical parametric knowledge of
LLMs has improved over time [19]. These findings provide
foundational evidence that state-of-the-art LLMs may be
sufficiently advanced that they now demonstrate promise for
potential application in clinical settings. Nonetheless, we
acknowledge that the structured MCQ format, which has been
used to evaluate LLMs across a range of different medical
content areas and subfields, is far more structured and
unambiguous than practical, clinical scenarios. In addition, there
are serious risks of LLMs in psychiatric contexts (eg, LLMs
encouraging suicide [41]) and ethical considerations (eg, patients
forming bonds with LLMs [42]) that are unexplored in this
paper. We believe that there is value to both structured,
unambiguous benchmarking tasks (eg, answering MCQs) and
more practically applicable but equivocal tasks (eg, case
formulation from the “History of Present Illness” section of a
clinical note). We view this study as the first incremental step
toward elucidating psychiatric knowledge in existing LLMs
and recognize the need for subsequent work in several key areas:
(1) exploring how to adapt LLMs to perform clinically relevant
mental health tasks and applications, (2) investigating the
potential serious risks of harm these models could have in
mental health contexts, (3) exploring the ethical considerations
of introducing AI-based tools into mental health practice, and
(4) developing methods to measure and ensure the safety of
these models when they operate semiautonomously or
autonomously.

Strengths and Limitations
The strengths of this study include its novel focus on evaluating
psychiatric knowledge of LLMs and comparative analysis of 3
different GPT models, which may improve generalizability to
other families of models. Furthermore, to our knowledge, this
is the first study to examine the reliability of LLMs in a
psychiatry context, providing initial evidence for features that
could be used to develop a “confidence” measure of LLM
responses.

Limitations include a small and relatively uniform dataset (ie,
only 150 MCQs from a single source). It will be important for
future research efforts to include more representative data,
including from multiple sources. Further, it is possible that
outdated or biased questions in the underlying MCQ dataset,
which was published in 2020 prior to the introduction of the
Diagnostic and Statistical Manual for Mental Disorders, 5th
edition, Text Revision (DSM-5-TR), skewed the results and
deflated accuracy measures. In addition, because the MCQs
were publicly available online before the GPT models (GPT-3.5,
4, and 4o) were trained, it is possible that these questions were
included in the models’ training data and that the models may
have “memorized” the answers during training. This important
limitation is shared by several other papers examining the
performance of GPT on MCQs [37,43]. Both theoretical and
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empirical work suggests that models with more parameters have
a greater capacity for memorization [44,45]. Thus, some of the
performance gains of GPT-4 and GPT-4o over GPT-3 may be
attributable to memorization. However, other empiric work has
suggested that verbatim memorization is more likely for
sequences that are repeated throughout training data [46], which
may be less true of highly specialized, psychiatry MCQs.
Finally, the structured nature of the MCQ task differs
considerably from less structured clinical scenarios where
enthusiasts envision LLMs could operate. It will be important
for future work to evaluate the performance of LLMs in more
open-ended and applicable settings.

This study focused specifically on 3 models: GPT-3.5, GPT-4,
and GPT-4o. While these models were selected because of their
commercial popularity and breadth of prior research, we did
not test LLMs from other providers (eg, Anthropic) or more
recent GPT-family models. As future models are released, it
will be important to benchmark their performance on psychiatry
tasks.

Prompt optimization was beyond the scope of this study, but
methods like role prompting, few-shot learning, or
chain-of-thought reasoning could potentially improve the
accuracy or consistency of GPT models in answering psychiatry
MCQs. For example, role prompting (ie, explicitly instructing
the model “you are a board-certified psychiatrist who answers
questions in line with the latest scientific evidence”) might cue
the model to draw on more appropriate domain-specific
knowledge and clinical reasoning. Chain-of-thought prompting
that encourages models to reason through steps (eg, summarize
major symptoms and then build a differential diagnosis) may
improve model reasoning for more complex, multistep questions.
Given that optimal performance is necessary for any real-world
application, future work could focus on developing prompting
approaches that maximize accuracy within psychiatry. Finally,
self-confidence was assessed preresponse (as opposed to asking
the model to rate its generated answer alongside the MCQ). It
is possible that the latter approach or other unexplored
approaches may improve self-confidence measures.

In our methodology, the model was provided a list of its
previous answers to the MCQ when attempting to answer the
question again. This design was primarily employed to introduce
variability in input and facilitate the measure of inconsistency
within a limited number of trials. It is possible that this
methodology increased variance in our study (ie, by adding
variability to the input prompt, there is more variability in the
output). However, this technique may also have allowed the
model to engage in a process akin to self-reflection, which may

improve accuracy [47]. In addition, it is possible that this
approach mirrors the conversation context of multiturn
conversations that average patients and health care professionals
may use when interacting with LLMs (eg, asking a question in
several different ways within a single chat session such that the
model has access to its previous responses). In summary, we
cannot rule out that this design may have affected the results.
Future work could explicitly compare the accuracy and
consistency of MCQ answers across three types of contexts: (1)
fully independent contexts with no information sharing between
queries, (2) contexts like ours with select information sharing
between queries, and (3) conversational contexts with full
information sharing between queries. However, given that this
approach was consistent across models and trials, we believe
our comparative conclusions remain valid.

Significant hurdles remain in realizing AI-based mental health
tools, including ensuring that LLMs produce accurate
information in real-world scenarios, building LLM tools with
robust safety, and developing methods to measure and optimize
equity across patient groups in LLM performance. Future work
should focus on assessing LLM performance in more
open-ended psychiatric tasks such as responding to patient or
provider questions, developing measures of confidence in LLM
responses, and examining bias encoded in LLM representations
of psychiatric knowledge. Our findings support the idea that
response consistency may serve as an indicator of response
accuracy, which may further serve as an important safeguard
for integrating LLMs into clinical workflows. In addition, further
work is needed to determine the parametric knowledge of LLMs
in subspecialties of psychiatry, including child and adolescent
psychiatry, geriatric psychiatry, and consult-liaison psychiatry.

Conclusions
This work establishes that current LLMs encode accurate and
reliable psychiatric knowledge and suggests that response
consistency may be a useful metric for methods aimed to assess
confidence in LLM responses. Moreover, our findings suggest
that industry advancements in model quality and cost
optimization are applicable to psychiatric use cases, indicating
that future models may perform even better in mental health
applications than those tested here. These findings suggest that
there is significant promise for LLM tools in mental health
settings, such as assistance with clinical decision-making, patient
education, and chatbot-based treatment augmentation. Such
innovations have the potential to dramatically expand access to
mental health services and alleviate the severe shortage of
psychiatric providers.
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